Plutonium - Palladium $\mathbf{P u}_{3} \mathbf{P d}_{5}$ *

By Don T.Cromer
University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545, U.S.A.

(Received 31 October 1975; accepted 23 February 1976)

Abstract

Pu}_{3} \mathrm{Pd}_{5}, C m c m, \quad Z=4, a=9 \cdot 201\) (5), $b=$ 7.159 (5), $c=9.771$ (7) $\AA, \varrho_{c}=12.89 \mathrm{~g} \mathrm{~cm}^{-3}$. This is a previously unreported phase and is a new structure type, possibly isostructural with $\mathrm{Ga}_{5} \mathrm{Zr}_{3}$.

Introduction. The $\mathrm{Pu}-\mathrm{Pd}$ phase diagram given by Kutaitsev, Chebotarev, Lebedev, Andrianov, Konev \& Menshikova (1965) shows four compounds: $\mathrm{Pu}_{5} \mathrm{Pd}_{4}$, $\mathrm{PuPd}, \mathrm{Pu}_{3} \mathrm{Pd}_{4}$ and PuPd_{3}. The structure of $\mathrm{Pu}_{3} \mathrm{Pd}_{4}$ has been determined by Cromer, Larson \& Roof (1973) and of PuPd by Cromer (1975). PuPd_{3} has the AuCu_{3} structure (Kutaitsev et al., 1965). We have so far been unable to prepare $\mathrm{Pu}_{5} \mathrm{Pd}_{4}$ although we have prepared the possibly isostructural compound $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ and will report its structure later.
In a study of an alloy containing $67 \mathrm{at} . \% \mathrm{Pd}$ which had been arc melted and heat treated at $950^{\circ} \mathrm{C}$ for 7 days, a crystal fragment was found which gave an X-ray pattern different from any known phase. This crystal was found to be $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$, a compound not previously found in this system. This phase was also found in a $65 \mathrm{at} . \% \mathrm{Pd}$ alloy similarly prepared.

Precession photographs showed that the crystal belonged to space group Cmcm , if centrosymmetric. Reflections $h 0 l$ were present only if $l=2 n$ and reflections $h k l$ were present only if $h+k=2 n$. Lattice constants [Mo $K \alpha_{1}=0.70930 \AA$] and intensities were measured with graphite-monochromated Mo $K \alpha_{1}$ radiation on a Picker automatic diffractometer. The details of data collection were as described by Cromer \& Larson (1972). A complete sphere of intensities was measured for $2 \theta \leq 50^{\circ}$. Empirical absorption corrections were applied (Furnas, 1957) as well as a spherical correction using a mean value of $\mu \mathrm{r}=1.32\left(\mu=441 \mathrm{~cm}^{-1}\right)$ for the irregularly shaped crystal fragment.

The agreement between equivalent reflections was assessed by the index R_{F} defined as:

$$
R_{F}=\sum_{n} \sum_{i=1}^{j_{n}}\left|\bar{F}_{n}-F_{i, n}\right| / \sum_{n} j_{n} F_{n}=0.098
$$

where the summations are over the n unique reflections each having been observed j_{n} times ($j_{n}>1$) and

$$
F_{n}=\sum_{i=1}^{j_{n}} w_{i, n} F_{i, n} / \sum_{i=1}^{j_{n}} w_{i, n} .
$$

[^0]The w_{i} 's of the individual reflections were calculated from $\sigma(I)$ according to the expressions given by Stout \& Jensen (1968). A reflection was considered observed if $I \geq 2 \sigma(I)=2\left[I+B+(0.02 I)^{2}\right]^{1 / 2}$, where I is the net count and B is the background. The agreement between equivalent reflections, for some unknown reason, is larger than we usually achieve by the empirical method of absorption correction. Possibly the shape was too irregular for any absorption correction method to be very useful. Of the 323 unique reflections measured, 230 were observed.

Consideration of atomic volumes, deduced from structures of known $\mathrm{Pu}-\mathrm{Pd}$ compounds, suggested that

Table 1. Parameters from least-squares refinement of $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$

	x	y	z	B
	x	$0.6251(5)$	$\frac{1}{4}$	$0.75(8) \AA^{2}$
$\mathrm{Pu}(1)$	0	0	$0.62(6)$	
$\mathrm{Pu}(2)$	$0.2018(3)$	0	0	$0.89(15)$
$\mathrm{Pd}(1)$	0	$0.0254(11)$	$\frac{1}{4}$	0.
$\mathrm{Pd}(2)$	0	$0.3147(8)$	$0.4510(7)$	$0.89(11)$
$\mathrm{Pd}(3)$	$0.2219(7)$	$0.2863(7)$	0	$1.01(12)$

Table 2. Interatomic distances in $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$

the cell contained $4 \mathrm{Pu}_{3} \mathrm{Pd}_{5}$. With this stoichiometry assumed, application of direct methods easily led to the solution of the structure. The position sets used in Cmcm are

$\operatorname{Pu}(1)$	$4(c)$	$0 y \frac{1}{4}$	$y \simeq \frac{5}{8}$
$\operatorname{Pu}(2)$	$8(e)$	$x 00$	$x \simeq 0 \cdot 2$
$\operatorname{Pd}(1)$	$4(c)$	$0 y \frac{1}{4}$	$y \simeq 0$
$\operatorname{Pd}(2)$	$8(f)$	$0 y z$	$y \simeq 0 \cdot 31, z \simeq 0.45$
$\operatorname{Pd}(3)$	$8(g)$	$x y \frac{1}{4}$	$x \simeq 0 \cdot 22, y \simeq 0 \cdot 28$.

Full-matrix least-squares refinement with isotropic thermal parameters led to the parameters given in Table l. For these parameters, $R=\sum|\Delta F| / \sum F_{o}=0.0622$ and $R_{w}=\left[\sum w(\Delta F)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}=0 \cdot 0656$ with unobserved values omitted.* Relativistic Hartree-Fock scattering

[^1]factors (Cromer \& Waber, 1974) were used along with anomalous dispersion values of Cromer \& Liberman (1970). Subsequent refinement with anisotropic thermal parameters led to $R_{w}=0 \cdot 0645$. Hamilton's (1965) test rejects the hypothesis that the atoms vibrate anisotropically. The thermal parameters give no suggestion of disorder in this structure.

Discussion. This is a new structure type but may have the same structure as $\mathrm{Ga}_{5} \mathrm{Zr}_{3}$, a phase reported by Potzschke \& Schubert (1962). They, however, did not attempt to solve the structure. In their text they give the unit cell in the orientation which makes the space group Cmcm and the axial ratios are similar to those of $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$. In their Table 4, a and b are interchanged and this incorrect orientation for Cmcm has been quoted by Pearson (1967).

Interatomic distances are given in Table 2. The unitcell contents and coordination polyhedra are shown in Figs. 1 and 2. $\mathrm{Pu}(1)$ and $\mathrm{Pu}(2)$ each have 17 neighbors, nine of which are Pd for $\mathrm{Pu}(1)$ and 10 of which are Pd for $\mathrm{Pu}(2) . \mathrm{Pd}(1)$ has 13 neighbors, eight Pd and five $\operatorname{Pu} . \operatorname{Pd}(2)$ and $\operatorname{Pd}(3)$ each have eight Pd and

Fig. 1. Stereo view of the unit cell of $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$ showing the Pu polyhedra. The view is approximately along \mathbf{b}. The origin is at the lower, right rear. $\mathrm{Pu}(1)$ is on the right at $0,0 \cdot 625, \frac{1}{4} . \mathrm{Pu}(2)$ is on the left at $0 \cdot 702, \frac{1}{2}, \frac{1}{2}$.

Fig. 2. Stereo view of the unit cell of $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$ showing the Pd polyhedra. View direction and origin as in Fig. 1. The $\mathrm{Pd}(1)$ polyhedron is on the right at $0,0.975, \frac{3}{4}$. The $\operatorname{Pd}(2)$ polyhedron is in the middle at $\frac{1}{2}, 0 \cdot 815,0.049 . \operatorname{Pd}(3)$ is on the left at $0 \cdot 778,0 \cdot 714, \frac{3}{4}$.
six Pu neighbors for a total of 14 . No distances are unusually short and all atoms are fairly uniformly surrounded, a structural feature which is reflected in the nearly isotropic thermal motion.

All calculations were performed on a CDC-7600 computer using the LASL crystal structure codes developed by A. C. Larson. Thanks are due to V. O. Struebing for preparation of the alloys.

References

Cromer, D. T. (1975). Acta Cryst. B31, 1760-1761.
Cromer, D. T. \& Larson, A. C. (1972). Acta Cryst. B28, 2128-2132.
Cromer, D. T., Larson, A. C. \& Roof, R. B. (1973). Acta Cryst. B29, 564-567.

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
Furnas, T. C. (1957). Single Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Kutaitsev, V. I., Chebotarev, N. T., Lebedev, I. G., Andrianov, M. A., Konev, V. N. \& Menshikova, T. S. (1965). Plutonium 1965, edited by A. E. Kay \& M. B. Waldron, pp. 420-449. London: Chapman \& Hall.
Pearson, W. B. (1967). Handbook of Lattice Spacings and Structures of Metals, Vol. 2. New York: Pergamon Press.
Potzschke, M. \& Schubert, K. (1962). Z. Metallk. 53, 474-488.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, pp. 454-458. New York: Macmillan.

Acta Cryst. (1976). B32, 1932

p-Nitrophenyl- β-D-xylopyranoside

By Kazuaki Harata
Research Institute for Polymers and Textiles, Sawatari-4, Kanagawa-ku, Yokohama 221, Japan

(Received 23 January 1976; accepted 26 February 1976)

Abstract

C}_{11} \mathrm{H}_{13} \mathrm{O}_{7} \mathrm{~N}, M=271 \cdot 2\); orthorhombic, $P 2_{1} 2_{1} 2_{1} ; a=5 \cdot 502$ (1), $b=9.110$ (1), $c=22 \cdot 859$ (5) \AA; $Z=4, D_{m}=1.568$ (flotation), $D_{c}=1.573 \mathrm{~g} \mathrm{~cm}^{-3} . R=$ 0.042 for 915 reflexions. The xylopyranoside is in the C_{1} chair conformation. The valence angle of the oxygen atom linking with the p-nitrophenyl group is $118 \cdot 5^{\circ}$. The anomeric $\mathrm{C}-\mathrm{O}$ bond is twisted by 23.6° against the benzene plane.

Introduction. The needle-like crystals were obtained from an ethanol solution. The space group $P 2_{1} 2_{1} 2_{1}$ was deduced from systematic absences of $h=2 n+1$ for $h 00, k=2 n+1$ for $0 k 0$, and $l=2 n+1$ for $00 l$. Intensity data were collected on a Rigaku automatic four-circle diffractometer with a specimen $0.2 \times 0.2 \times$ 0.2 mm , using graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.70926 \AA$) and the $2 \theta-\omega$ scanning mode.

Table 1. Final atomic parameters $\left(\times 10^{4}\right)$ for the non-hydrogen atoms
The temperature factor expression used is $\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+h k \beta_{12}+h l \beta_{13}+k l \beta_{23}\right)\right]$. Values in parentheses are estimated standard deviations.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	5478 (10)	2769 (5)	6602 (2)	238 (19)	47 (5)	11 (1)	-13 (18)	4 (8)	3 (4)
C(2)	7555 (9)	2854 (5)	7037 (2)	157 (17)	56 (5)	12 (1)	-4 (18)	1 (7)	-6(4)
C(3)	7906 (9)	4440 (5)	7236 (2)	170 (18)	56 (5)	14 (1)	7 (18)	-1 (8)	-1 (4)
C(4)	7958 (9)	5520 (5)	6726 (2)	187 (19)	53 (6)	16 (1)	11 (17)	-17(8)	-12 (4)
C(5)	5983 (11)	5174 (6)	6276 (2)	292 (24)	74 (7)	16 (1)	-46 (21)	34 (9)	-11 (5)
$\mathrm{O}(1)$	5322 (7)	1306 (3)	6425 (2)	237 (14)	54 (4)	16 (1)	-7 (14)	17 (6)	9 (3)
$\mathrm{O}(2)$	6993 (6)	2014 (4)	7547 (2)	189 (13)	48 (4)	15 (1)	39 (13)	-16 (6)	-8(3)
$\mathrm{O}(3)$	117 (7)	4563 (4)	7542 (2)	242 (13)	66 (4)	19 (1)	-62 (13)	58 (6)	-21(3)
$\mathrm{O}(4)$	7665 (7)	6989 (4)	6940 (2)	223 (15)	43 (4)	19 (1)	8 (14)	-2 (7)	0 (3)
$\mathrm{O}(5)$	6062 (7)	3660 (4)	6114 (1)	316 (16)	68 (4)	12 (1)	-39 (14)	3 (6)	3 (3)
C(6)	3290 (9)	861 (5)	6121 (2)	200 (17)	65 (6)	10 (1)	-25 (17)	-3 (8)	6 (4)
C(7)	2843 (10)	-637 (5)	6136 (2)	314 (22)	58 (6)	13 (1)	16 (20)	-8(9)	1 (4)
C(8)	897 (10)	-1209 (5)	5842 (2)	301 (22)	51 (6)	16 (1)	-33 (19)	6 (9)	-1 (5)
C(9)	- 523 (10)	-276 (5)	5516 (2)	256 (19)	77 (7)	12 (1)	-25 (19)	-10 (8)	10 (4)
$\mathrm{C}(10)$	-117 (10)	1223 (5)	5487 (2)	255 (20)	70 (6)	15 (1)	13 (21)	10 (9)	-10 (5)
C(11)	1827 (10)	1789 (5)	5804 (2)	269 (21)	50 (5)	16 (1)	-17 (18)	13 (9)	1 (4)
O (6)	-3271 (7)	-2124(4)	5320 (2)	335 (16)	80 (4)	20 (1)	- 126 (16)	-6 (6)	8 (3)
$\mathrm{O}(7)$	-3494 (8)	-165 (4)	4797 (2)	457 (19)	127 (6)	24 (1)	-143 (20)	101 (8)	-26(4)
N	-2575 (8)	-893 (4)	5186 (2)	229 (17)	91 (6)	15 (1)	-46 (17)	-6 (7)	14 (4)

[^0]: * Work performed under the auspices of the U. S. ERDA.

[^1]: * A listing of the final least-squares cycle, including observed and calculated structure factors, followed by the interatomic distance calculations, has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31700 (13 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

